hUI/hui/src/instance.rs
2024-03-25 01:59:13 +01:00

305 lines
12 KiB
Rust

use glam::Vec2;
use crate::{
draw::{
ImageHandle, TextureFormat, UiDrawCall, UiDrawCommandList,
atlas::{TextureAtlasManager, TextureAtlasMeta},
},
element::{MeasureContext, ProcessContext, UiElement},
event::{EventQueue, UiEvent},
input::UiInputState,
layout::{Direction, LayoutInfo},
signal::{SignalStore, Signal},
state::StateRepo,
text::{FontHandle, TextRenderer}
};
/// The main instance of the UI system.
///
/// In most cases, you should only have one instance of this struct, but multiple instances are allowed\
/// (Please note that it's possible to render multiple UI "roots" using a single instance)
pub struct UiInstance {
//mouse_position: Vec2,
stateful_state: StateRepo,
//event_queue: VecDeque<UiEvent>,
prev_draw_commands: UiDrawCommandList,
draw_commands: UiDrawCommandList,
draw_call: UiDrawCall,
draw_call_modified: bool,
text_renderer: TextRenderer,
atlas: TextureAtlasManager,
events: EventQueue,
input: UiInputState,
signal: SignalStore,
//True if in the middle of a laying out a frame
state: bool,
}
impl UiInstance {
/// Crate and initialize a new instance of the UI
///
/// In most cases, you should only do this *once*, during the initialization of your application
pub fn new() -> Self {
UiInstance {
//mouse_position: Vec2::ZERO,
stateful_state: StateRepo::default(),
//event_queue: VecDeque::new(),
// root_elements: Vec::new(),
prev_draw_commands: UiDrawCommandList::default(),
draw_commands: UiDrawCommandList::default(),
draw_call: UiDrawCall::default(),
draw_call_modified: false,
// ftm: FontTextureManager::default(),
text_renderer: TextRenderer::new(),
atlas: {
let mut atlas = TextureAtlasManager::default();
atlas.add_dummy();
atlas
},
events: EventQueue::new(),
input: UiInputState::new(),
signal: SignalStore::new(),
state: false,
}
}
/// Parse and add a font from a raw byte slice to the UI\
/// TrueType (`.ttf`/`.ttc`) and OpenType (`.otf`) fonts are supported\
///
/// Returns a font handle ([`FontHandle`]).
///
/// ## Panics:
/// If the font data is invalid or corrupt
pub fn add_font(&mut self, font: &[u8]) -> FontHandle {
self.text_renderer.add_font_from_bytes(font)
}
/// Add an image to the texture atlas\
/// Accepted texture formats are `Rgba` and `Grayscale`
///
/// Returns an image handle ([`ImageHandle`])\
/// This handle can be used to reference the texture in draw commands\
/// It's a light reference and can be cloned/copied freely, but will not be cleaned up even when dropped
pub fn add_image(&mut self, format: TextureFormat, data: &[u8], width: usize) -> ImageHandle {
self.atlas.add(width, data, format)
}
//TODO better error handling
/// Add an image from a file to the texture atlas\
/// (experimental, may be removed in the future)
///
/// Requires the `image` feature
///
/// # Panics:
/// - If the file exists but contains invalid image data\
/// (this will change to a soft error in the future)
#[cfg(feature = "image")]
pub fn add_image_file_path(&mut self, path: impl AsRef<std::path::Path>) -> Result<ImageHandle, std::io::Error> {
use std::io::{Read, Seek};
// Open the file (and wrap it in a bufreader)
let mut file = std::io::BufReader::new(std::fs::File::open(path)?);
//Guess the image format from the magic bytes
//Read like 64 bytes, which should be enough for magic byte detection
//well this would fail if the image is somehow smaller than 64 bytes, but who the fvck cares...
let mut magic = [0; 64];
file.read_exact(&mut magic)?;
let format = image::guess_format(&magic).expect("Invalid image data (FORMAT)");
file.seek(std::io::SeekFrom::Start(0))?;
//Parse the image and read the raw uncompressed rgba data
let image = image::load(file, format).expect("Invalid image data");
let image_rgba = image.as_rgba8().unwrap();
//Add the image to the atlas
let handle = self.add_image(
TextureFormat::Rgba,
image_rgba,
image.width() as usize
);
Ok(handle)
}
/// Push a font to the font stack\
/// The font will be used for all text rendering until it is popped
///
/// This function is useful for replacing the default font, use sparingly\
/// (This library attempts to be stateless, however passing the font to every text element is not very practical)
pub fn push_font(&mut self, font: FontHandle) {
self.text_renderer.push_font(font);
}
/// Pop a font from the font stack\
///
/// ## Panics:
/// If the font stack is empty
pub fn pop_font(&mut self) {
self.text_renderer.pop_font();
}
/// Get the current default font
pub fn current_font(&self) -> FontHandle {
self.text_renderer.current_font()
}
/// Add an element or an element tree to the UI
///
/// Use the `max_size` parameter to specify the maximum size of the element\
/// (usually, the size of the window/screen)
///
/// ## Panics:
/// If called while the UI is not active (call [`UiInstance::begin`] first)
pub fn add<T: UiElement>(&mut self, element: T, max_size: Vec2) {
assert!(self.state, "must call UiInstance::begin before adding elements");
let layout = LayoutInfo {
position: Vec2::ZERO,
max_size,
direction: Direction::Vertical,
};
let measure = element.measure(MeasureContext {
state: &self.stateful_state,
layout: &layout,
text_measure: self.text_renderer.to_measure(),
current_font: self.text_renderer.current_font(),
images: self.atlas.context(),
});
element.process(ProcessContext {
measure: &measure,
state: &mut self.stateful_state,
layout: &layout,
draw: &mut self.draw_commands,
text_measure: self.text_renderer.to_measure(),
current_font: self.text_renderer.current_font(),
images: self.atlas.context(),
input: self.input.ctx(),
signal: &mut self.signal,
});
}
/// Prepare the UI for layout and processing\
/// You must call this function at the beginning of the frame, before adding any elements\
///
/// ## Panics:
/// If called twice in a row (for example, if you forget to call [`UiInstance::end`])\
/// This is an indication of a bug in your code and should be fixed.
pub fn begin(&mut self) {
//check and update current state
assert!(!self.state, "must call UiInstance::end before calling UiInstance::begin again");
self.state = true;
//first, drain and process the event queue
self.input.update_state(&mut self.events);
//then, reset the (remaining) signals
self.signal.clear();
//then, reset the draw commands
std::mem::swap(&mut self.prev_draw_commands, &mut self.draw_commands);
self.draw_commands.commands.clear();
self.draw_call_modified = false;
//reset atlas modification flag
self.atlas.reset_modified();
}
/// End the frame and prepare the UI for rendering\
/// You must call this function at the end of the frame, before rendering the UI
///
/// ## Panics:
/// If called without calling [`UiInstance::begin`] first. (or if called twice)\
/// This is an indication of a bug in your code and should be fixed.
pub fn end(&mut self) {
//check and update current state
assert!(self.state, "must call UiInstance::begin before calling UiInstance::end");
self.state = false;
//check if the draw commands have been modified
if self.draw_commands.commands == self.prev_draw_commands.commands {
return
}
//if they have, rebuild the draw call and set the modified flag
self.draw_call = UiDrawCall::build(&self.draw_commands, &mut self.atlas, &mut self.text_renderer);
self.draw_call_modified = true;
}
/// Get the draw call information for the current frame
///
/// This function should only be used by the render backend.\
/// You should not call this directly unless you're implementing a custom render backend
///
/// Returns a tuple with a boolean indicating if the buffers have been modified since the last frame
///
/// You should only call this function *after* [`UiInstance::end`]\
/// Calling it in the middle of a frame will result in a warning but will not cause a panic\
/// (please note that doing so is probably a mistake and should be fixed in your code)\
/// Doing so anyway will return draw call data for the previous frame, but the `modified` flag will *always* be incorrect until [`UiInstance::end`] is called
///
pub fn draw_call(&self) -> (bool, &UiDrawCall) {
if self.state {
log::warn!("UiInstance::draw_call called while in the middle of a frame, this is probably a mistake");
}
(self.draw_call_modified, &self.draw_call)
}
/// Get the texture atlas size and data for the current frame
///
/// This function should only be used by the render backend.\
/// You should not call this directly unless you're implementing a custom render backend
///
/// You should only call this function *after* [`UiInstance::end`]\
/// Calling it in the middle of a frame will result in a warning but will not cause a panic\
/// (please note that doing so is probably a mistake and should be fixed in your code)\
/// Using this function in the middle of a frame will return partially modified atlas data that may be outdated or incomplete\
/// This will lead to rendering artifacts, 1-frame delays and flashes and is probably not what you want
///
/// Make sure to check [`TextureAtlasMeta::modified`] to see if the texture has been modified
/// since the beginning of the current frame before uploading it to the GPU
pub fn atlas(&self) -> TextureAtlasMeta {
if self.state {
log::warn!("UiInstance::atlas called while in the middle of a frame, this is probably a mistake");
}
self.atlas.meta()
}
/// Push a platform event to the UI event queue
///
/// You should call this function *before* calling [`UiInstance::begin`] or after calling [`UiInstance::end`]\
/// Calling it in the middle of a frame will result in a warning but will not cause a panic\
/// (please note that doing so is probably a mistake and should be fixed in your code)\
/// In this case, the event will be processed in the next frame, but in some cases may affect the current frame.\
/// (The exact behavior is not guaranteed and you should avoid doing this if possible)
///
/// This function should only be used by the platform backend.\
/// You should not call this directly unless you're implementing a custom platform backend
/// or have a very specific usecase
pub fn push_event(&mut self, event: UiEvent) {
if self.state {
log::warn!("UiInstance::push_event called while in the middle of a frame, this is probably a mistake");
}
self.events.push(event);
}
/// Push a "fake" signal to the UI signal queue
pub fn push_signal<T: Signal + 'static>(&mut self, signal: T) {
self.signal.add(signal);
}
//TODO: offer a non-consuming version of this function for T: Clone
/// Process all signals of a given type
///
/// This clears the signal queue for the given type and iterates over all signals
pub fn process_signals<T: Signal + 'static>(&mut self, f: impl FnMut(T)) {
self.signal.drain::<T>().for_each(f);
}
}
impl Default for UiInstance {
fn default() -> Self {
Self::new()
}
}