hUI/hui/src/layout.rs
2024-03-25 14:08:04 +01:00

241 lines
7 KiB
Rust

//! element layout, alignment and sizing
use glam::{vec2, Vec2};
/// Controls wrapping behavior of elements
#[derive(Clone, Copy, PartialEq, Eq, Debug, PartialOrd, Ord, Default)]
pub enum WrapBehavior {
/// No wrapping is allowed, even if explicit line breaks is requested by the element
Disable = 0,
/// Allow wrapping if the element explicitly requests it (default behavior)
#[default]
Allow = 1,
/// Elements will be wrapped automatically when they reach the maximum width/height of the container
Enable = 2,
}
impl From<bool> for WrapBehavior {
#[inline]
fn from(value: bool) -> Self {
match value {
true => Self::Enable,
false => Self::Disable,
}
}
}
impl WrapBehavior {
/// Check if wrapping is allowed for the element
#[inline]
pub fn is_allowed(&self) -> bool {
*self != Self::Disable
}
/// Check if wrapping is enabled for the element
///
/// (Wrapping will be done automatically when the element reaches the maximum width/height)
#[inline]
pub fn is_enabled(&self) -> bool {
*self == Self::Enable
}
}
/// Alignment along a single axis
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default, PartialOrd, Ord)]
pub enum Alignment {
/// Put the element at the beginning of the axis\
/// (left for horizontal, top for vertical alignment)
#[default]
Begin = 0,
/// Put the element in the center
Center = 1,
/// Put the element at the end of the axis\
/// (right for horizontal, bottom for vertical alignment)
End = 2,
}
/// Represents alignment in 2D space
///
/// - `horizontal` - alignment *along* x-axis (horizontal)\
/// - `vertical` - alignment *along* y-axis (vertical)
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default, PartialOrd, Ord)]
pub struct Alignment2d {
/// Alignment *along* horizontal axis (X)
///
/// ```text
/// ├───────[ ]──────┤
/// ↑↑ ↑↑ ↑↑
/// Begin Center End
/// ```
pub horizontal: Alignment,
/// Alignment *along* vertical axis (Y)
///
/// ```text
/// ┬ ←─ Begin
/// │
/// [ ] ←─ Center
/// │
/// ┴ ←─ End
/// ```
pub vertical: Alignment,
}
impl Alignment2d {
/// Create a new `Alignment2d` with the same alignment for both axes
#[inline]
pub const fn all(alignment: Alignment) -> Self {
Self {
horizontal: alignment,
vertical: alignment,
}
}
}
impl From<(Alignment, Alignment)> for Alignment2d {
#[inline]
fn from((horizontal, vertical): (Alignment, Alignment)) -> Self {
Self { horizontal, vertical }
}
}
impl From<[Alignment; 2]> for Alignment2d {
#[inline]
fn from([horizontal, vertical]: [Alignment; 2]) -> Self {
Self { horizontal, vertical }
}
}
impl From<Alignment> for Alignment2d {
#[inline]
fn from(alignment: Alignment) -> Self {
Self::all(alignment)
}
}
/// Represents a single size dimension of an UI element.\
/// Can be either a static size in pixels, a fraction the parent size or auto-calculated\
/// (Meaning of `auto` is entirely dependent on the element).
#[derive(Default, Debug, Clone, Copy, PartialEq)]
pub enum Size {
/// Automatically calculate size based on content
#[default]
Auto,
/// Static size in pixels
Absolute(f32),
/// Size as a ratio of parent element size
///
/// Expected range: `0.0..=1.0`
Relative(f32),
/// Size as a ratio of remaining space after all other elements have been laid out
///
/// Expected range: `0.0..=1.0`
///
/// - This feature is experimental and may not work as expected;\
/// Current `Container` implementation:
/// - Assumes that he line is fully filled if any element uses `Remaining` size, even if sum of remaining sizes is less than 1.0
/// - Does not support `Remaining` size in the secondary axis, it will be treated as `Relative`
/// - In cases where it's not applicable or not supported, it's defined to behave as `Relative`
Remaining(f32),
}
impl From<f32> for Size {
#[inline]
fn from(value: f32) -> Self {
Self::Absolute(value)
}
}
#[derive(Default, Debug, Clone, Copy, PartialEq)]
pub struct Size2d {
pub width: Size,
pub height: Size,
}
impl From<(Size, Size)> for Size2d {
#[inline]
fn from((width, height): (Size, Size)) -> Self {
Self { width, height }
}
}
//XXX: should this exist?
impl From<Size> for Size2d {
#[inline]
fn from(size: Size) -> Self {
Self {
width: size,
height: size,
}
}
}
/// Represents the direction of the layout\
/// (for example, the direction of a container's children)\
///
/// - `Vertical` - Children are laid out from top to bottom\
/// - `Horizontal` - Children are laid out from left to right
#[derive(Default, Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Direction {
/// Children are laid out from top to bottom
#[default]
Vertical,
/// Children are laid out from left to right
Horizontal,
}
/// Represents the layout information required to measure, layout and render an element.\
/// Includes the position, maximum size, direction of the layout and other information
pub struct LayoutInfo {
/// Screen-space coordinates of the top-left corner of the element.\
/// Use this value during the layout step to render the element
///
/// Not available during the measure step (will be set to zero)
pub position: Vec2,
/// Maximum size the element is allowed to take up
pub max_size: Vec2,
/// Current direction of the layout\
/// (Usually matches direction of the parent container)
pub direction: Direction,
/// Remaining space in the primary axis\
///
/// This value is only available during the layout step and is only likely to be present if the element uses `Size::Remaining`
///
/// (Make sure that LayoutInfo::direction is set to the correct direction!)
pub remaining_space: Option<f32>,
}
/// Helper function to calculate the size of an element based on its layout and size information\
/// Used to help reduce code duplication in the `measure` method of UI elements
pub fn compute_size(layout: &LayoutInfo, size: Size2d, comfy_size: Vec2) -> Vec2 {
let width = match size.width {
Size::Auto => comfy_size.x,
Size::Relative(fraction) => layout.max_size.x * fraction,
Size::Absolute(size) => size,
Size::Remaining(fraction) => match layout.direction {
Direction::Horizontal => layout.remaining_space.unwrap_or(layout.max_size.x) * fraction,
Direction::Vertical => layout.max_size.x * fraction,
}
};
let height = match size.height {
Size::Auto => comfy_size.y,
Size::Relative(fraction) => layout.max_size.y * fraction,
Size::Absolute(size) => size,
Size::Remaining(fraction) => match layout.direction {
Direction::Horizontal => layout.max_size.y * fraction,
Direction::Vertical => layout.remaining_space.unwrap_or(layout.max_size.y) * fraction,
}
};
vec2(width, height)
}