able-script/src/interpret.rs

256 lines
9 KiB
Rust
Raw Normal View History

//! Expression evaluator and statement interpreter.
//!
//! To interpret a piece of AbleScript code, you first need to
//! construct an [ExecEnv], which is responsible for storing the stack
//! of local variable and function definitions accessible from an
//! AbleScript snippet. You can then call [ExecEnv::eval_items] to
//! evaluate or execute any number of expressions or statements.
#[deny(missing_docs)]
use std::collections::HashMap;
use std::convert::TryFrom;
use crate::{
error::{Error, ErrorKind},
parser::item::{Expr, Iden, Item, Stmt},
variables::{Value, Variable},
};
/// An environment for executing AbleScript code.
pub struct ExecEnv {
/// The stack, ordered such that `stack[stack.len() - 1]` is the
/// top-most (newest) stack frame, and `stack[0]` is the
/// bottom-most (oldest) stack frame.
stack: Vec<Scope>,
}
/// A set of visible variable and function definitions, which serves
/// as a context in which expressions can be evaluated.
#[derive(Default)]
struct Scope {
/// The mapping from variable names to values.
variables: HashMap<String, Variable>,
// In the future, this will store functio definitions and possibly
// other information.
}
/// The result of successfully executing a set of statements.
enum ControlFlow {
/// The statements evaluated to this value.
Value(Value),
/// A "break" statement occurred at the top level.
Break,
/// A "hopback" statement occurred at the top level.
Hopback,
}
impl ExecEnv {
/// Create a new Scope with no predefined variable definitions or
/// other information.
pub fn new() -> Self {
Self {
stack: Default::default(),
}
}
/// Evaluate a set of Items in their own stack frame. Return the
/// value of the last Item evaluated, or an error if one or more
/// of the Items failed to evaluate.
pub fn eval_items(&mut self, items: &[Item]) -> Result<Value, Error> {
match self.eval_items_cf(items)? {
ControlFlow::Value(v) => Ok(v),
ControlFlow::Break | ControlFlow::Hopback => Err(Error {
// It's an error to issue a `break` outside of a
// `loop` statement.
kind: ErrorKind::TopLevelBreak,
position: 0..0,
}),
}
}
/// The same as `eval_items`, but reports "break" and "hopback"
/// exit codes as normal conditions in a ControlFlow enum.
fn eval_items_cf(&mut self, items: &[Item]) -> Result<ControlFlow, Error> {
let init_depth = self.stack.len();
self.stack.push(Default::default());
let mut final_result = Ok(ControlFlow::Value(Value::Nul));
for item in items {
final_result = self.eval_item(item);
if !matches!(final_result, Ok(ControlFlow::Value(_))) {
break;
}
}
self.stack.pop();
// Invariant: stack size must have net 0 change.
debug_assert_eq!(self.stack.len(), init_depth);
final_result
}
/// Evaluate a single Item, returning its value or an error.
fn eval_item(&mut self, item: &Item) -> Result<ControlFlow, Error> {
match item {
Item::Expr(expr) => self.eval_expr(expr).map(|v| ControlFlow::Value(v)),
Item::Stmt(stmt) => self.eval_stmt(stmt),
}
}
/// Evaluate an Expr, returning its value or an error.
fn eval_expr(&self, expr: &Expr) -> Result<Value, Error> {
use Expr::*;
use Value::*;
// NOTE(Alex): This is quite nasty, and should probably be
// re-done using macros or something.
Ok(match expr {
Add { left, right } => {
Int(i32::try_from(self.eval_expr(left)?)? + i32::try_from(self.eval_expr(right)?)?)
}
Subtract { left, right } => {
Int(i32::try_from(self.eval_expr(left)?)? - i32::try_from(self.eval_expr(right)?)?)
}
Multiply { left, right } => {
Int(i32::try_from(self.eval_expr(left)?)? * i32::try_from(self.eval_expr(right)?)?)
}
Divide { left, right } => {
Int(i32::try_from(self.eval_expr(left)?)? / i32::try_from(self.eval_expr(right)?)?)
}
Lt { left, right } => {
Bool(i32::try_from(self.eval_expr(left)?)? < i32::try_from(self.eval_expr(right)?)?)
}
Gt { left, right } => {
Bool(i32::try_from(self.eval_expr(left)?)? > i32::try_from(self.eval_expr(right)?)?)
}
Eq { left, right } => Bool(self.eval_expr(left)? == self.eval_expr(right)?),
Neq { left, right } => Bool(self.eval_expr(left)? != self.eval_expr(right)?),
And { left, right } => {
Bool(bool::from(self.eval_expr(left)?) && bool::from(self.eval_expr(right)?))
}
Or { left, right } => {
Bool(bool::from(self.eval_expr(left)?) || bool::from(self.eval_expr(right)?))
}
Not(expr) => Bool(!bool::from(self.eval_expr(expr)?)),
Literal(value) => value.clone(),
Identifier(Iden(name)) => self.get_var(name)?.value.clone(),
})
}
/// Perform the action indicated by a statement.
fn eval_stmt(&mut self, stmt: &Stmt) -> Result<ControlFlow, Error> {
match stmt {
Stmt::Print(expr) => {
println!("{}", self.eval_expr(expr)?);
}
Stmt::VariableDeclaration { iden, init } => {
let init = match init {
Some(e) => self.eval_expr(e)?,
None => Value::Nul,
};
// There's always at least one stack frame on the
// stack if we're evaluating something, so we can
// `unwrap` here.
self.stack.iter_mut().last().unwrap().variables.insert(
iden.0.clone(),
Variable {
melo: false,
value: init,
},
);
}
Stmt::FunctionDeclaration {
iden: _,
args: _,
body: _,
} => todo!(),
Stmt::BfFDeclaration { iden: _, body: _ } => todo!(),
Stmt::If { cond, body } => {
if self.eval_expr(cond)?.into() {
return self.eval_items_cf(body);
}
}
Stmt::FunctionCall { iden: _, args: _ } => todo!(),
Stmt::Loop { body } => loop {
let res = self.eval_items_cf(body)?;
match res {
ControlFlow::Value(_) => {}
ControlFlow::Break => break,
ControlFlow::Hopback => continue,
}
},
Stmt::VarAssignment { iden, value } => {
self.get_var_mut(&iden.0)?.value = self.eval_expr(value)?;
}
Stmt::Break => {
return Ok(ControlFlow::Break);
}
Stmt::HopBack => {
return Ok(ControlFlow::Hopback);
}
Stmt::Melo(iden) => {
self.get_var_mut(&iden.0)?.melo = true;
}
}
Ok(ControlFlow::Value(Value::Nul))
}
/// Get a shared reference to the value of a variable. Throw an
/// error if the variable is inaccessible or banned.
fn get_var(&self, name: &str) -> Result<&Variable, Error> {
match self
.stack
.iter()
.rev()
.find_map(|scope| scope.variables.get(name))
{
Some(var) => {
if !var.melo {
Ok(var)
} else {
Err(Error {
kind: ErrorKind::MeloVariable(name.to_owned()),
// TODO: figure out some way to avoid this
// 0..0 dumbness
position: 0..0,
})
}
}
None => Err(Error {
kind: ErrorKind::UnknownVariable(name.to_owned()),
position: 0..0,
}),
}
}
/// Get a mutable reference to a variable. Throw an error if the
/// variable is inaccessible or banned.
fn get_var_mut(&mut self, name: &str) -> Result<&mut Variable, Error> {
// FIXME: This function is almost exactly the same as get_var.
match self
.stack
.iter_mut()
.rev()
.find_map(|scope| scope.variables.get_mut(name))
{
Some(var) => {
if !var.melo {
Ok(var)
} else {
Err(Error {
kind: ErrorKind::MeloVariable(name.to_owned()),
position: 0..0,
})
}
}
None => Err(Error {
kind: ErrorKind::UnknownVariable(name.to_owned()),
position: 0..0,
}),
}
}
}