//! AbleScript Parser //! //! Type of this parser is recursive descent use logos::{Lexer, Logos}; use crate::ast::*; use crate::error::{Error, ErrorKind}; use crate::lexer::Token; use crate::variables::Value; /// Parser structure which holds lexer and metadata /// /// Make one using [`Parser::new`] function pub struct Parser<'source> { lexer: Lexer<'source, Token>, } impl<'source> Parser<'source> { /// Create a new parser from source code pub fn new(source: &'source str) -> Self { Self { lexer: Token::lexer(source), } } /// Start parsing tokens /// /// Loops trough lexer, parses statements, returns AST pub fn init(&mut self) -> Result, Error> { let mut ast = vec![]; while let Some(token) = self.lexer.next() { ast.push(self.parse(token)?); } Ok(ast) } /// Parse a token /// /// This function will route to corresponding flow functions /// which may advance the lexer iterator fn parse(&mut self, token: Token) -> Result { let start = self.lexer.span().start; match token { Token::If => Ok(Stmt::new(self.if_flow()?, start..self.lexer.span().end)), Token::Functio => Ok(Stmt::new( self.functio_flow()?, start..self.lexer.span().end, )), t => Err(Error { kind: ErrorKind::UnexpectedToken(t), span: start..self.lexer.span().end, }), } } /// Require next item to be equal with expected one fn require(&mut self, expected: Token) -> Result<(), Error> { match self.lexer.next() { Some(t) if t == expected => Ok(()), Some(t) => Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())), None => Err(Error::unexpected_eof()), } } /// Get an Identifier fn get_iden(&mut self) -> Result { match self.lexer.next().ok_or(Error::unexpected_eof())? { Token::Identifier(iden) => Ok(Iden { iden, span: self.lexer.span(), }), t => Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())), } } /// Parse an expression /// /// AbleScript strongly separates expressions from statements. /// Expressions do not have any side effects and the are /// only mathematial and logical operations or values. fn parse_expr(&mut self, token: Token, buf: &mut Option) -> Result { let start = self.lexer.span().start; match token { // Values Token::Identifier(i) => Ok(Expr::new( ExprKind::Variable(i), start..self.lexer.span().end, )), Token::Abool(a) => Ok(Expr::new( ExprKind::Literal(Value::Abool(a)), start..self.lexer.span().end, )), Token::Bool(b) => Ok(Expr::new( ExprKind::Literal(Value::Bool(b)), start..self.lexer.span().end, )), Token::Integer(i) => Ok(Expr::new( ExprKind::Literal(Value::Int(i)), start..self.lexer.span().end, )), Token::String(s) => Ok(Expr::new( ExprKind::Literal(Value::Str(s)), start..self.lexer.span().end, )), Token::Nul => Ok(Expr::new( ExprKind::Literal(Value::Nul), start..self.lexer.span().end, )), // Operations Token::Plus | Token::Minus | Token::Star | Token::FwdSlash | Token::EqualEqual | Token::NotEqual | Token::LessThan | Token::GreaterThan | Token::And | Token::Or => Ok(Expr::new( self.op_flow( match BinOpKind::from_token(token) { Ok(op) => op, Err(e) => return Err(Error::new(e, self.lexer.span())), }, buf, )?, start..self.lexer.span().end, )), Token::Not => Ok(Expr::new( { let next = self.lexer.next().ok_or(Error::unexpected_eof())?; ExprKind::Not(Box::new(self.parse_expr(next, buf)?)) }, start..self.lexer.span().end, )), Token::LeftParen => self.expr_flow(Token::RightParen), t => Err(Error::new( ErrorKind::UnexpectedToken(t), start..self.lexer.span().end, )), } } /// Flow for operators /// /// Generates operation from LHS buffer and next expression as RHS /// /// This is unaware of precedence, as AbleScript do not have it fn op_flow(&mut self, kind: BinOpKind, lhs: &mut Option) -> Result { Ok(ExprKind::BinOp { lhs: Box::new( lhs.take() .ok_or(Error::new(ErrorKind::MissingLhs, self.lexer.span()))?, ), rhs: { let next = self.lexer.next().ok_or(Error::unexpected_eof())?; Box::new(self.parse_expr(next, &mut None)?) }, kind, }) } /// Parse expressions until terminate token fn expr_flow(&mut self, terminate: Token) -> Result { let mut buf = None; Ok(loop { match self.lexer.next().ok_or(Error::unexpected_eof())? { t if t == terminate => break buf.take().unwrap(), t => buf = Some(self.parse_expr(t, &mut buf)?), } }) } /// Parse a list of statements between curly braces fn parse_block(&mut self) -> Result { self.require(Token::LeftCurly)?; let mut block = vec![]; loop { match self.lexer.next().ok_or(Error::unexpected_eof())? { Token::RightCurly => break, t => block.push(self.parse(t)?), } } Ok(Block { block }) } /// Parse If flow /// /// Consists of condition and block, there is no else fn if_flow(&mut self) -> Result { self.require(Token::LeftParen)?; let cond = self.expr_flow(Token::RightParen)?; let body = self.parse_block()?; Ok(StmtKind::If { cond, body }) } /// Parse functio flow /// /// functio $iden (a, b, c) { ... } fn functio_flow(&mut self) -> Result { let iden = self.get_iden()?; self.require(Token::LeftParen)?; let mut args = vec![]; loop { match self.lexer.next().ok_or(Error::unexpected_eof())? { Token::RightParen => break, Token::Identifier(i) => { args.push(Iden::new(i, self.lexer.span())); match self.lexer.next().ok_or(Error::unexpected_eof())? { Token::Comma => continue, Token::RightParen => break, t => { return Err(Error::new( ErrorKind::UnexpectedToken(t), self.lexer.span(), )) } } } t => return Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())), } } let body = self.parse_block()?; Ok(StmtKind::Functio { iden, args, body }) } }