use std::{cell::RefCell, fmt::Display, io::Write, ops::Range, rc::Rc}; use rand::Rng; use crate::{ ast::Stmt, error::{Error, ErrorKind}, }; #[derive(Debug, Clone, PartialEq)] pub enum Abool { Never = -1, Sometimes = 0, Always = 1, } impl Display for Abool { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Abool::Never => write!(f, "never"), Abool::Sometimes => write!(f, "sometimes"), Abool::Always => write!(f, "always"), } } } impl From for bool { fn from(val: Abool) -> Self { match val { Abool::Never => false, Abool::Always => true, Abool::Sometimes => rand::thread_rng().gen(), // NOTE(Able): This is amazing and should be applied anywhere abooleans exist } } } #[derive(Debug, PartialEq, Clone)] pub enum Functio { BfFunctio { instructions: Vec, tape_len: usize, }, AbleFunctio { params: Vec, body: Vec, }, } #[derive(Debug, PartialEq, Clone)] pub enum Value { Nul, Str(String), Int(i32), Bool(bool), Abool(Abool), Functio(Functio), } impl Value { /// Write an AbleScript value to a Brainfuck input stream. This /// should generally only be called on `Write`rs that cannot fail, /// e.g., `Vec`, because any IO errors will cause a panic. /// /// The mapping from values to encodings is as follows, where all /// multi-byte integers are little-endian: /// /// | AbleScript representation | Brainfuck representation | /// |---------------------------|-------------------------------------------------------------| /// | Nul | `00` | /// | Str | `01` [length, 4 bytes] [string, \[LENGTH\] bytes, as UTF-8] | /// | Int | `02` [value, 4 bytes] | /// | Bool | `03` `00` false, `03` `01` true. | /// | Abool | `04` `00` never, `04` `01` always, `04` `02` sometimes. | /// | Brainfuck Functio | `05` `00` [length, 4 bytes] [source code, \[LENGTH\] bytes] | /// | AbleScript Functio | `05` `01` (todo, not yet finalized or implemented) | /// /// The existing mappings should never change, as they are /// directly visible from Brainfuck code and modifying them would /// break a significant amount of AbleScript code. If more types /// are added in the future, they should be assigned the remaining /// discriminant bytes from 06..FF. pub fn bf_write(&self, stream: &mut impl Write) { match self { Value::Nul => stream.write_all(&[0]), Value::Str(s) => stream .write_all(&[1]) .and_then(|_| stream.write_all(&(s.len() as u32).to_le_bytes())) .and_then(|_| stream.write_all(&s.as_bytes())), Value::Int(v) => stream .write_all(&[2]) .and_then(|_| stream.write_all(&v.to_le_bytes())), Value::Bool(b) => stream .write_all(&[3]) .and_then(|_| stream.write_all(&[*b as _])), Value::Abool(a) => stream.write_all(&[4]).and_then(|_| { stream.write_all(&[match *a { Abool::Never => 0, Abool::Sometimes => 2, Abool::Always => 1, }]) }), Value::Functio(f) => stream.write_all(&[5]).and_then(|_| match f { Functio::BfFunctio { instructions, tape_len: _, } => { // NOTE(Alex): Tape length should maybe be taken // into account here. stream .write_all(&[0]) .and_then(|_| stream.write_all(&(instructions.len() as u32).to_le_bytes())) .and_then(|_| stream.write_all(&instructions)) } Functio::AbleFunctio { params: _, body: _ } => { todo!() } }), } .expect("Failed to write to Brainfuck input"); } /// Attempt to coerce a Value to an integer. If the conversion /// fails, the generated error message is associated with the /// given span. pub fn to_i32(self, span: &Range) -> Result { match self { Value::Int(i) => Ok(i), _ => Err(Error { kind: ErrorKind::TypeError(format!("Expected int, got {}", self)), span: span.clone(), }), } } /// Coerce a Value to a boolean. The conversion cannot fail. pub fn to_bool(self) -> bool { match self { // Booleans and abooleans have a trivial conversion. Value::Bool(b) => b, Value::Abool(b) => b.into(), // The empty string is falsey, other strings are truthy. Value::Str(s) => s.len() != 0, // 0 is falsey, nonzero is truthy. Value::Int(x) => x != 0, // Functios are always truthy. Value::Functio(_) => true, // And nul is truthy as a symbol of the fact that the // deep, fundamental truth of this world is nothing but // the eternal void. Value::Nul => true, } } } impl Display for Value { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Value::Nul => write!(f, "nul"), Value::Str(v) => write!(f, "{}", v), Value::Int(v) => write!(f, "{}", v), Value::Bool(v) => write!(f, "{}", v), Value::Abool(v) => write!(f, "{}", v), Value::Functio(v) => match v { Functio::BfFunctio { instructions, tape_len, } => { write!( f, "({}) {}", tape_len, String::from_utf8(instructions.to_owned()) .expect("Brainfuck functio source should be UTF-8") ) } Functio::AbleFunctio { params, body } => { write!( f, "({}) -> {:?}", params.join(", "), // Maybe we should have a pretty-printer for // statement blocks at some point? body, ) } }, } } } #[derive(Debug)] pub struct Variable { pub melo: bool, // Multiple Variables can reference the same underlying Value when // pass-by-reference is used, therefore we use Rc here. pub value: Rc>, }