holey-bytes/hblang/README.md

561 lines
9.2 KiB
Markdown

# HERE SHALL THE DOCUMENTATION RESIDE
## Enforced Political Views
- worse is better
- less is more
- embrace `unsafe {}`
- adhere `macro_rules!`
- pessimization == death (put in `std::pin::Pin` and left with hungry crabs)
- importing external dependencies == death (`fn(dependencies) -> ExecutionStrategy`)
- above sell not be disputed, discussed, or questioned
## What hblang is
Holey-Bytes-Language (hblang for short) (*.hb) is the only true language targeting hbvm byte code. hblang is low level, manually managed, and procedural. Its rumored to be better then writing hbasm and you should probably use it for complex applications.
## What hblang isnt't
hblang knows what it isn't, because it knows what it is, hblang computes this by sub...
## Examples
Examples are also used in tests. To add an example that runs during testing add:
<pre>
#### &lt;name&gt
```hb
&lt;example&gt
```
</pre>
and also:
```rs
<name> => README;
```
to the `run_tests` macro at the bottom of the `src/codegen.rs`.
### Tour Examples
Following examples incrementally introduce language features and syntax.
#### main_fn
```hb
main := fn(): int {
return 1;
}
```
#### arithmetic
```hb
main := fn(): int {
return 10 - 20 / 2 + 4 * (2 + 2) - 4 * 4 + 1 << 0
}
```
#### functions
```hb
main := fn(): int {
return add_one(10) + add_two(20)
}
add_two := fn(x: int): int {
return x + 2
}
add_one := fn(x: int): int {
return x + 1
}
```
#### comments
```hb
// commant is an item
main := fn(): int {
// comment is a statement
foo(/* comment is an exprression /* if you are crazy */ */)
return 0
}
foo := fn(comment: void): void return /* comment evaluates to void */
// comments might be formatted in the future
```
#### if_statements
```hb
main := fn(): int {
return fib(10)
}
fib := fn(x: int): int {
if x <= 2 {
return 1
} else {
return fib(x - 1) + fib(x - 2)
}
}
```
#### variables
```hb
main := fn(): int {
ඞ := 1
b := 2
ඞ += 1
return ඞ - b
}
```
#### loops
```hb
main := fn(): int {
return fib(10)
}
fib := fn(n: int): int {
a := 0
b := 1
loop {
if n == 0 break
c := a + b
a = b
b = c
n -= 1
stack_reclamation_edge_case := 0
continue
}
return a
}
```
#### pointers
```hb
main := fn(): int {
a := 1
b := &a
modify(b)
drop(a)
stack_reclamation_edge_case := 0
return *b - 2
}
modify := fn(a: ^int): void {
*a = 2
return
}
drop := fn(a: int): void {
return
}
```
#### structs
```hb
Ty := struct {
a: int,
b: int,
}
Ty2 := struct {
ty: Ty,
c: int,
}
main := fn(): int {
finst := Ty2.{ty: Ty.{a: 4, b: 1}, c: 3}
inst := odher_pass(finst)
if inst.c == 3 {
return pass(&inst.ty)
}
return 0
}
pass := fn(t: ^Ty): int {
.{a, b} := *t
return a - b
}
odher_pass := fn(t: Ty2): Ty2 {
return t
}
```
#### struct_operators
```hb
Point := struct {
x: int,
y: int,
}
Rect := struct {
a: Point,
b: Point,
}
main := fn(): int {
a := Point.(1, 2)
b := Point.(3, 4)
d := Rect.(a + b, b - a)
d2 := Rect.(Point.(0, 0) - b, a)
d2 += d
c := d2.a + d2.b
return c.x + c.y
}
```
#### global_variables
```hb
global_var := 10
complex_global_var := fib(global_var) - 5
fib := fn(n: int): int {
if 2 > n {
return n
}
return fib(n - 1) + fib(n - 2)
}
main := fn(): int {
return complex_global_var
}
```
note: values of global variables are evaluated at compile time
#### directives
```hb
foo := @use("foo.hb")
main := fn(): int {
byte := @as(u8, 10)
same_type_as_byte := @as(@TypeOf(byte), 30)
wide_uint := @as(u32, 40)
truncated_uint := @as(u8, @intcast(wide_uint))
size_of_Type_in_bytes := @sizeof(foo.Type)
align_of_Type_in_bytes := @alignof(foo.Type)
hardcoded_pointer := @as(^u8, @bitcast(10))
ecall_that_returns_int := @eca(int, 1, foo.Type.(10, 20), 5, 6)
return 0
}
// in module: foo.hb
Type := struct {
brah: int,
blah: int,
}
```
- `@use(<string>)`: imports a module based of string, the string is passed to a loader that can be customized, default loader uses following syntax:
- `((rel:|)(<path>)|git:<git-addr>:<path>)`: `rel:` and `''` prefixes both mean module is located at `path` relavive to the current file, `git:` takes a git url without `https://` passed as `git-addr`, `path` then refers to file within the repository
- `@TypeOf(<expr>)`: results into literal type of whatever the type of `<expr>` is, `<expr>` is not included in final binary
- `@as(<ty>, <expr>)`: hint to the compiler that `@TypeOf(<expr>) == <ty>`
- `@intcast(<expr>)`: needs to be used when conversion of `@TypeOf(<expr>)` would loose precision (widening of integers is implicit)
- `@sizeof(<ty>), @alignof(<ty>)`: I think explaining this would insult your intelligence
- `@bitcast(<expr>)`: tell compiler to assume `@TypeOf(<expr>)` is whatever is inferred, so long as size and alignment did not change
- `@eca(<ty>, <expr>...)`: invoke `eca` instruction, where `<ty>` is the type this will return and `<expr>...` are arguments passed to the call
#### c_strings
```hb
str_len := fn(str: ^u8): int {
len := 0
loop if *str == 0 break else {
len += 1
str += 1
}
return len
}
main := fn(): int {
// when string ends with '\0' its a C string and thus type is '^u8'
some_str := "abඞ\n\r\t\{ff}\{fff0f0ff}\0"
len := str_len(some_str)
some_other_str := "fff\0"
lep := str_len(some_other_str)
return lep + len
}
```
#### struct_patterns
```hb
.{fib, fib_iter, Fiber} := @use("fibs.hb")
main := fn(): int {
.{a, b} := Fiber.{a: 10, b: 10}
return fib(a) - fib_iter(b)
}
// in module: fibs.hb
Fiber := struct {a: u8, b: u8}
fib := fn(n: int): int if n < 2 {
return n
} else {
return fib(n - 1) + fib(n - 2)
}
fib_iter := fn(n: int): int {
a := 0
b := 1
loop if n == 0 break else {
c := a + b
a = b
b = c
n -= 1
}
return a
}
```
#### arrays
```hb
main := fn(): int {
arr := [int].(1, 2, 4)
return pass(&arr)
}
pass := fn(arr: ^[int; 3]): int {
return arr[0] + arr[1] + arr[arr[1]]
}
```
### Incomplete Examples
#### comptime_pointers
```hb
main := fn(): int {
$integer := 7
modify(&integer)
return integer
}
modify := fn($num: ^int): void {
$: *num = 0
}
```
#### generic_types
```hb
MALLOC_SYS_CALL := 69
FREE_SYS_CALL := 96
malloc := fn(size: uint, align: uint): ^void return @eca(^void, MALLOC_SYS_CALL, size, align)
free := fn(ptr: ^void, size: uint, align: uint): void return @eca(void, FREE_SYS_CALL, ptr, size, align)
Vec := fn($Elem: type): type {
return struct {
data: ^Elem,
len: uint,
cap: uint,
}
}
new := fn($Elem: type): Vec(Elem) return Vec(Elem).{data: @bitcast(0), len: 0, cap: 0}
deinit := fn($Elem: type, vec: ^Vec(Elem)): void {
free(@bitcast(vec.data), vec.cap * @sizeof(Elem), @alignof(Elem));
*vec = new(Elem)
return
}
push := fn($Elem: type, vec: ^Vec(Elem), value: Elem): ^Elem {
if vec.len == vec.cap {
if vec.cap == 0 {
vec.cap = 1
} else {
vec.cap *= 2
}
new_alloc := @as(^Elem, @bitcast(malloc(vec.cap * @sizeof(Elem), @alignof(Elem))))
if new_alloc == 0 return 0
src_cursor := vec.data
dst_cursor := new_alloc
end := vec.data + vec.len
loop if src_cursor == end break else {
*dst_cursor = *src_cursor
src_cursor += 1
dst_cursor += 1
}
if vec.len != 0 {
free(@bitcast(vec.data), vec.len * @sizeof(Elem), @alignof(Elem))
}
vec.data = new_alloc
}
slot := vec.data + vec.len;
*slot = value
vec.len += 1
return slot
}
main := fn(): int {
vec := new(int)
push(int, &vec, 69)
res := *vec.data
deinit(int, &vec)
return res
}
```
#### generic_functions
```hb
add := fn($T: type, a: T, b: T): T return a + b
main := fn(): int {
return add(u32, 2, 2) - add(int, 1, 3)
}
```
#### fb_driver
```hb
arm_fb_ptr := fn(): int return 100
x86_fb_ptr := fn(): int return 100
check_platform := fn(): int {
return x86_fb_ptr()
}
set_pixel := fn(x: int, y: int, width: int): int {
pix_offset := y * width + x
return 0
}
main := fn(): int {
fb_ptr := check_platform()
width := 100
height := 30
x := 0
y := 0
loop {
if x <= height + 1 {
set_pixel(x, y, width)
x += 1
} else {
set_pixel(x, y, width)
x = 0
y += 1
}
if y == width {
break
}
}
return 0
}
```
### Purely Testing Examples
#### different_types
```hb
Color := struct {
r: u8,
g: u8,
b: u8,
a: u8,
}
Point := struct {
x: u32,
y: u32,
}
Pixel := struct {
color: Color,
point: Point,
}
main := fn(): int {
pixel := Pixel.{
color: Color.{
r: 255,
g: 0,
b: 0,
a: 255,
},
point: Point.{
x: 0,
y: 2,
},
}
soupan := 1
if *(&pixel.point.x + soupan) != 2 {
return 0
}
if *(&pixel.point.y - 1) != 0 {
return 64
}
return pixel.point.x + pixel.point.y + pixel.color.r
+ pixel.color.g + pixel.color.b + pixel.color.a
}
```
#### struct_return_from_module_function
```hb
bar := @use("bar.hb")
main := fn(): int {
return 7 - bar.foo().x - bar.foo().y - bar.foo().z
}
// in module: bar.hb
foo := fn(): Foo {
return .{x: 3, y: 2, z: 2}
}
Foo := struct {x: int, y: u32, z: u32}
```
#### sort_something_viredly
```hb
main := fn(): int {
foo := sqrt
return 0
}
sqrt := fn(x: int): int {
temp := 0
g := 0
b := 32768
bshift := 15
loop if b == 0 break else {
bshift -= 1
temp = b + (g << 1)
temp <<= bshift
if x >= temp {
g += b
x -= temp
}
b >>= 1
}
return g
}
```
#### hex_octal_binary_literals
```hb
main := fn(): int {
hex := 0xFF
decimal := 255
octal := 0o377
binary := 0b11111111
if hex == decimal & octal == decimal & binary == decimal {
return 0
}
return 1
}
```