Stackifier algorithm

This commit is contained in:
Chris Fallin 2021-12-15 01:29:10 -08:00
parent a43575ac00
commit 427501de95

View file

@ -3,8 +3,6 @@
use std::collections::BTreeSet; use std::collections::BTreeSet;
use fxhash::{FxHashMap, FxHashSet};
use crate::{cfg::CFGInfo, ir::*}; use crate::{cfg::CFGInfo, ir::*};
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
@ -138,13 +136,6 @@ impl Region {
} }
} }
fn key(&self) -> RegionEndpoint {
match self {
&Region::Forward(..) => self.end(),
&Region::Backward(..) => self.start(),
}
}
fn contains(&self, other: &Region) -> bool { fn contains(&self, other: &Region) -> bool {
self.start() <= other.start() && self.end() >= other.end() self.start() <= other.start() && self.end() >= other.end()
} }
@ -170,81 +161,6 @@ impl Region {
_ => false, _ => false,
} }
} }
fn adjust_nesting(&mut self, outer: &mut Region) -> bool {
let key1 = std::cmp::min(self.key(), outer.key());
let key2 = std::cmp::max(self.key(), outer.key());
let self_key = self.key();
let swapped = self.adjust_nesting_impl(outer);
assert!(outer.contains(self));
assert_eq!(key1, std::cmp::min(self.key(), outer.key()));
assert_eq!(key2, std::cmp::max(self.key(), outer.key()));
assert!(self_key <= self.key());
swapped
}
/// Returns `true` if regions were swapped.
fn adjust_nesting_impl(&mut self, outer: &mut Region) -> bool {
match (outer, self) {
(
&mut Region::Forward(ref mut a, ref mut b),
&mut Region::Forward(ref mut c, ref mut d),
) => {
assert!(*b <= *d); // scan order
if *c <= *a {
std::mem::swap(a, c);
std::mem::swap(b, d);
true
} else if *c < *b {
*a = *c;
std::mem::swap(b, d);
true
} else {
false
}
}
(&mut Region::Forward(_, b), &mut Region::Backward(c, _)) => {
assert!(b <= c); // scan order
// nothing to do: no overlap possible.
false
}
(outer @ &mut Region::Backward(..), inner @ &mut Region::Forward(..)) => {
let a = outer.start().block;
let b = outer.end().block;
let c = inner.start().block;
let d = inner.end().block;
assert!(a <= d); // scan order
if b < d {
let new_outer = Region::Forward(a, d);
let new_inner = Region::Backward(a, b);
*outer = new_outer;
*inner = new_inner;
true
} else {
false
}
}
(
&mut Region::Backward(ref mut a, ref mut b),
&mut Region::Backward(ref mut c, ref mut d),
) => {
assert!(*a <= *c); // scan order
if *b < *d {
*b = *d;
true
} else {
false
}
}
}
}
} }
impl Shape { impl Shape {
@ -257,91 +173,131 @@ impl Shape {
log::trace!("rpo = {:?}", order); log::trace!("rpo = {:?}", order);
assert_eq!(order[0], 0); // Entry block should come first. assert_eq!(order[0], 0); // Entry block should come first.
let mut regions = vec![];
// Compute nest of loop headers per block.
// If a given block is a loop header, then
// `loop_end[block_rpo_index]` will be
// Some(last_loop_body_rpo_index)`.
let mut loop_header_to_end: Vec<Option<OrderedBlockId>> = vec![None; order.len()];
// Record forward edges as tuples of RPO-block-indices for
// processing below.
let mut forward_edges: Vec<(OrderedBlockId, OrderedBlockId)> = vec![];
for (block_pos, &block) in order.iter().enumerate() { for (block_pos, &block) in order.iter().enumerate() {
for &succ in cfg.succs(block) { for &succ in cfg.succs(block) {
let succ_pos = cfg let succ_pos = cfg
.rpo_pos(succ) .rpo_pos(succ)
.expect("if block is reachable then succ should be too"); .expect("if block is reachable then succ should be too");
if succ_pos < block_pos { if succ_pos < block_pos {
regions.push(Region::Backward(succ_pos, block_pos)); let end = loop_header_to_end[succ_pos].unwrap_or(block_pos);
let end = std::cmp::max(end, block_pos);
loop_header_to_end[succ_pos] = Some(end);
} else if succ_pos > block_pos + 1 { } else if succ_pos > block_pos + 1 {
regions.push(Region::Forward(block_pos, succ_pos)); forward_edges.push((block_pos, succ_pos));
} }
} }
} }
// Look for irreducible edges. TODO: handle these by // Extend loop ends to fully nest subloops. Also build loop
// introducing label variables, then editing the region to // nest info for each block.
// refer to the canonical header block. Take care when jumping let mut stack = vec![];
// into multiple nested loops. let mut loop_nest = vec![];
let backedge_targets = regions for block in 0..order.len() {
.iter() while let Some(&(_first, last)) = stack.last() {
.filter(|r| r.is_backward()) if block > last {
.map(|r| r.start().block)
.collect::<BTreeSet<_>>();
for region in &regions {
if let &Region::Forward(from, to) = region {
if let Some(&header_block) = backedge_targets.range((from + 1)..to).next() {
panic!(
"Irreducible edge from block {} to block {}: jumps into loop with header block {}",
order[from], order[to], order[header_block]
);
}
}
}
// Sort regions by either their "target": either their start
// (for backward regions) or end (for forward regions). This
// will be the final order of the regions; we can extend the
// "source" (the opposite endpoint) as needed to ensure proper
// nesting.
regions.sort_by_key(|r| r.key());
log::trace!("regions = {:?}", regions);
// Now scan the regions, tracking the stack as we go; where we
// encounter a region that overlaps region(s) on the stack,
// find the largest enclosing region, and adjust the region to
// enclose it, inserting it in the stack at that point.
//
// [ ...)
// (... ]
// (... ]
// [ ...)
// [ ...)
// We scan by "sorting key", which is the branch target; it is
// the start of backward regions and end of forward regions.
//
// We maintain the invariant that `stack` always contains all
// regions that contain the scan point (at the start of the
// loop body, up to the previous scan point; after loop body,
// updated wrt the current scan point).
let mut stack: Vec<usize> = vec![];
for i in 0..regions.len() {
// Pop from the stack any regions that no longer contain the target.
while let Some(&top_idx) = stack.last() {
if !regions[top_idx].contains_endpoint(regions[i].key()) {
stack.pop(); stack.pop();
} else { } else {
break; break;
} }
} }
if let Some(end) = loop_header_to_end[block] {
// Push the current region. stack.push((block, end));
stack.push(i); }
for &mut (start, ref mut end) in &mut stack {
// Go up the stack, extending all applicable regions. if block > *end {
for i in (0..(stack.len() - 1)).rev() { loop_header_to_end[start] = Some(block);
let mut outer = regions[stack[i]]; *end = block;
let mut inner = regions[stack[i + 1]];
let swapped = inner.adjust_nesting(&mut outer);
regions[stack[i]] = outer;
regions[stack[i + 1]] = inner;
if swapped {
stack.swap(i, i + 1);
} }
} }
loop_nest.push(stack.clone());
}
log::trace!("loop_header_to_end = {:?}", loop_header_to_end);
log::trace!("loop_nest = {:?}", loop_nest);
// Look for irreducible edges. TODO: handle these by
// introducing label variables, then editing the region to
// refer to the canonical header block. Take care when jumping
// into multiple nested loops.
let loop_headers = loop_header_to_end
.iter()
.enumerate()
.filter(|(_, entry)| entry.is_some())
.map(|(header, _)| header)
.collect::<BTreeSet<_>>();
for &(from, to) in &forward_edges {
if let Some(&header_block) = loop_headers.range((from + 1)..to).next() {
panic!(
"Irreducible edge from block {} to block {}: jumps into loop with header block {}",
order[from], order[to], order[header_block]
);
}
}
log::trace!("loop_headers = {:?}", loop_headers);
log::trace!("forward_edges = {:?}", forward_edges);
// Process forward edges: add "block-start count" to
// containing scopes, and mark block-end points.
let mut block_ends = vec![false; order.len()];
let mut block_end_to_start = vec![None; order.len()];
let mut block_starts = vec![vec![]; order.len()];
for &(from, to) in &forward_edges {
if !block_ends[to] {
block_ends[to] = true;
}
let start = block_end_to_start[to].unwrap_or(from);
let start = std::cmp::min(start, from);
block_end_to_start[to] = Some(start);
}
for block in 0..order.len() {
if let Some(start) = block_end_to_start[block] {
// Examine loop nest of endpoint. Must be a prefix of
// loop nest of startpoint if control flow is
// reducible. If start is inside any additional loops,
// we need to move the startpoint back to the start of
// those loops.
let start_loopnest = &loop_nest[start];
let end_loopnest = &loop_nest[block];
let extra_loops = start_loopnest
.strip_prefix(&end_loopnest[..])
.expect("Irreducible control flow");
let start = if extra_loops.len() > 0 {
extra_loops[0].0
} else {
start
};
block_starts[start].push(block);
}
}
log::trace!("block_starts = {:?}", block_starts);
log::trace!("block_end_to_start = {:?}", block_end_to_start);
// Now generate the region list which we use to produce the "shape".
let mut regions = vec![];
for block in 0..order.len() {
for &block_end in block_starts[block].iter().rev() {
regions.push(Region::Forward(block, block_end));
}
if let Some(loop_end) = loop_header_to_end[block] {
regions.push(Region::Backward(block, loop_end));
}
} }
log::trace!("after stackifying: {:?}", regions); log::trace!("after stackifying: {:?}", regions);
@ -374,10 +330,6 @@ impl Shape {
} }
} }
// TODO: make regions properly nest by doing replication right
// as we compute the RPO. Track the current nesting, and
// traverse more than once if needed.
// Build the final shape description. // Build the final shape description.
let (shapes, _) = Shape::get_shapes(0, order.len(), &order[..], &regions[..]); let (shapes, _) = Shape::get_shapes(0, order.len(), &order[..], &regions[..]);
let root = if shapes.len() == 1 { let root = if shapes.len() == 1 {